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When light rotating fluid spreads over heavier fluid in the vicinity of a vertical wall 
(coast) a boundary jet of width L^ forms, the leading edge or nose of which propagates 
with speed c^ along the coast. A certain fraction 8 of the boundary transport is not 
carried by the nose but is deflected backwards (detrained) and left behind the 
propagating nose. Theoretical and experimental results for L^, 2, and 6 are given for 
a quasi-equilibrium (constant-6) regime. Over longer time intervals the laboratory 
observations suggest that  the nose slows down and stagnates, whereupon the trailing 
flow separates from the coast and an intermittent boundary current forms. These 
processes may be relevant to the mixing of oceanic coastal currents and the 
maintenance of the mean current. 

1. Introduction and statement of the problem 
The way in which rotation inhibits the lateral spreading and mixing of a density 

current is illustrated by the Rossby adjustment problem (Saunders 1973; Stern 1975, 
chap. 111). In the initial state a circular cylinder of radius R ,  height H and density 
p is resting in a frame rotating with angular velocity + f ,  and is surrounded by a deep 
resting fluid of density p + A p .  Gravity then causes the cylinder of uniform potential 
vorticity f / H  to collapse vertically and spread horizontally, with individual columns 
tending to conserve potential vorticity. A balanced geostrophic (cyclostrophic) vortex 
may then result, in which the surface front advances only a distance A R  - (g*H)V-' 
of the order of the Rossby radius of deformation, where g* = g A p / p .  The vortex may 
be unstable, and more than one vortex may form if the initial radius is large compared 
with AR (Griffiths & Linden 1981). 

The adjustment and the overall mixing process is drastically altered, however, 
when there is a vertical wall (figure 1 ) .  Although the adjustment of the semi-infinite 
light fluid is essentially unaltered a t  large distances jl from the wall, a boundary 
current near 9 = 0 must develop to accommodate the geostrophic flow into the wall. 
This coastal current transports the light fluid away from its source region, and 
thereby allows mixing to  occur over much greater distances than would occur without 
the boundary (Wadhams, Gill & Linden 1979). What is the width of the boundary 
current ; what is the nature of the leading edge (nose) of the coastal intrusion; is the 
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FIGURE 1 .  The initial stage in the rotating dam-break problem when a vertical wall (3  = 0) is 
present. The semi-infinite upper fluid has density p and the very deep lower layer has density 
p+Ap.  The top view ( a )  shows the surface front advancing a distance AR a t  position far from 
the wall. But the geostrophic flow that  develops runs into a wall stagnation point and a coastal 
intrusion must form. The vertical section ( b )  shows the equilihrium front far from the wall. 

boundary current laminar, and if not, how does it mix into the adjacent water 1 These 
questions are addressed here by a combined theoretical and experimental study. The 
experiments (see $ 2 )  consist of lifting a vertical gate (‘dam-break’ experiment) which 
was initially in the position of the dashed line in figure 1 .  The thin layer of light water 
( p )  in this figure then spread laterally and was deflected to the coast, where a 
boundary current finally emerged. The dimensional width $ of the latter was 
measured, as well as the nose speed of the density current. Considerable lateral 
detrainment from the seaward portion of the nose was also observed, this effect being 
somewhat similar to the vertical detrainment through the interface of a non-rotating 
intrusion in a two-layer fluid (Brittcr & Simpson 1978: Simpson & Britter 1979). 
Benjamin (1968) has given a theory for the latter case, the experimental agreement 
being good in a limiting regime where the detrainment is relatively weak. Our theory 
of the rotating intrusion therefore begins ($3) with the generalization of Benjamin’s 
theory. We do not, however, neglect the (experimentally) important detrainment 
effect. Another notable novelty of our problem is the additional horizontal dimension 
and structure of the fluid behind the bore. We identify those regions where the flow 
is approximately steady, and also those unstcady regions in which the important 
detrainment occurs. With these additional considerations Benjamin’s theory for the 
nose speed will obviously not close, and additional constraints on the trailing current 
are necessary. For this purpose we advance ($4) a model and a similarity solution, 
whic’l predicts an upstream width (cf. equations (4.31). (C 23)) for a so-called ‘limiting 
bore’ (Stern 1980) which agrees closely with experiment (equations (2.1), (3.3)). By 
combining thc model with Benjamin’s formula, a nose speed and detrainment 
coefficient are predicted which are also in acceptable agreement w ith experiments. 

The reader should be warned, however, that  the simple theory corresponds to a 
different initial-value problem than does the complex experiment, and it will be 
argued that a connection between the two exists a t  later times. In  view of the admitted 
weakness of this argument, an alternative derivation of one main theoretical result. 
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involving much weaker assumptions, is given in appendix A. This leads to an upper 
bound on the width of semi-permanent intrusions, and any wider initial state could 
not propagate along a coast before i t  suffered great alterations (e.g. bifurcation into 
a thin current which leaves the wide current behind). 

2. The laboratory experiment 
2.1 Set-up and procedure 

Although the problem in which a heavy density current intrudes on the bottom of 
the rotating tank will have similar properties, it is experimentally more convenient 
to work with a surface intrusion so as to minimize Ekman friction and to eliminate 
topographic effects due to the slope of the bottom relative to the level parabolic 
surfaces. 

The experiments were conducted in a rectangular tank which was made from 
Plexiglas one-half inch wide. The tank, sketched in figure 2, was 183 ern long, 29.2 cm 
deep, and 20 cm wide (inside dimensions). Grooves were cut into the sides and bottom 
of the tank a t  various places in order to allow a sliding gate, of 22-gauge stainless 
steel, to divide the tank into two chambers. The grooves were approximately 2 mm 
wide and 3 mm deep. Since only one set of grooves was used at a time, the unused 
grooves were covered with cellophane tape to  make the walls smoother. A mirror was 
placed next to  the tank a t  an angle of approximately 45Oso that  an observer who 
was looking down from above could see both a top and side view of the tank. The 
tank and apparatus were mounted on the two-metre turntable at the Woods Hole 
Oceanographic Institution. The shaft of the table had been levelled to  better than five 
seconds of arc. A 16 mm motor-driven cin6 camera was rotated in synchronization 
with the turntable so that films could be taken of the flows in the tank with the use 
of small paper floats t'hat were sprinkled on the surface of wat'er in the tank. 

For each experimental run the tank was first filled with tap water to a depth of 
18.7 cm. The temperature of the water matched the temperature of the room to within 
0.1 "C, to minimize convect,ively driven flows. A measured amount of salt was then 
added to the water, and mixed thoroughly in order to eliminate the slightest' 
detectible stratification. The gate was then slid into the set of slots that  were 49 cm 
from one end of the tank. The bottom of the gate was 10 ern above the bottom of 
the tank so that pressure equilibration existed. Two pieces of one-quarter inch 
plywood were then floated in the 49 ern long chamber, the tank was covered by a 
Plexiglas lid, the turntable was brought to the desired rate of rotation, and the salt 
water was allowed to spin up for 15 min to a state close to solid-body rotation. The 
preparation for the experiment was completed by slowly and carefully siphoning some 
coloured fresh water onto the plywood floats in the small chamber until a desired 
depth ( 2 , 4  or 8 cm) of fresh water floated above the salty water. The density of the 
two waters was not measured directly but was estimated by means of a linear curve 
of density as a function of weight of salt added to the bottom water. Fractional 
density differences Ap/p in the experiments were estimated to be 2.1, 3-2 ,  4 3 ,  8.7, 
13.1 or 17.5 x lop3. All these values are below the densities which were in the table 
in Hodgman (1961). The curve we used was a linear extrapolation from the one 
and two per cent values in the handbook. Errors are less than ten per cent, and to 
this accuracy, temperature and potassium permanganate have negligible effect on 
density. 

Just before the experiment was started, the Plexiglas cover was removed from the 
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FIGURE 2. Sketch of the experimental apparatus. 

tank, the cin6 camera was started, and the sliding gate was carefully removed. In  
order to reduce the dripping effect from the emerging gate, a foam wiper was placed 
on each side of the guiding frame through which the gate was slid. The foam wipers 
were positioned so as to just contact the surface of the water after the coloured water 
had been put in. Use of the wipers and the guide frame in removing the gate resulted 
in a less-disturbed starting interface between the light and heavy fluids. 

2.2. Measurements and analysis of data 

After the gate was lifted, small paper floats were ‘sprinkled ’ on the radially collapsing 
dye front in the channel, and cin6 pictures were taken of the side-view mirror as well 
as the plan view. 

The method of analysis was strongly tailored after the features of the flowing bore 
that were observed. The principal features of the bore (sketched in figure 3) are 
somewhat visible in figure 4. The nose of the bore (figure -la) was not steady, but 
eddies peeled off the outer region and were left behind with a much slower 
translational velocity than the nose of the bore. On the wall immediately behind the 
nose was a ‘neck’, which was often the thinnest and shallowest portion of the laminar 
jet behind the nose. Although the neck was visible a sizable percentage of the viewing 
time, i t  was sometimes obscured by the edge of an eddy that had been detrained from 
the nose. Behind the neck were two regions. Near the wall an approximately laminar 
current supplied fresh fluid to the nose of the bore. This current was bordered on the 
outside by a region of strong cyclonic vorticity (‘vortex sheet’), which separated the 
current from a region of eddies. These ‘large-scale’ eddies were complicated and 
turbulent in appearance. Some had been generated from the detraining process a t  
the nose of the bore and some seem to have been detrained further upstream as 
illustrated more clearly in figure - l (b ) .  Particles in the laminar current near the wall 
appeared to speed up and slow down as the eddies deformed the outer edge of the 
jet, but the particles in this current did not reverse direction relative to the nose, 
while the particles in the eddy region clearly did. There are many instances in the 
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FIGURE 3. Schematic diagram of a quasi-equilibrium rotating bore far from the source region. The 
streamlines show the motion relative to an observer moving with the nose speed 6 .  The relative 
mass transport ( a )  a t  P = - co is non-zero. The detrained fraction 6 of the flow reappears on the 
other side of the laminar vortex sheet (fj = L), and is left behind as the nose propagates along the 
coast. 

cin6 films when it was difficult or even impossible to distinguish the laminar current 
from the eddies, but there are other instances when it  was easy to distinguish between 
the two. In  those cases the eddy activity was small outside of the laminar current, 
and the region separating the boundary current from the eddies had a strong shear. 
The continuity of this vortex sheet is visible in the cine films, and more so to the 
eye while the experiment is running. We have therefore attempted to quantify the 
width of the boundary current by measuring the distance from the vortex sheet, when 
visible, to the wall. 

The measuring procedure was to set up a cine projector a t  a set distance from a 
piece of white cardboard screen. An investigator (J. W.) would sit next to the screen 
and look for clear instances of the vortex sheet. When one was sighted, dividers would 
be placed on the screen, with one point on the vortex sheet and one on the tank wall. 
The projector was then stopped as promptly as possible, and the distance from the 
span of the dividers measured. With the projector still stopped, the corresponding 
wall depth of the dyed fluid (in the 45’ mirror) was also measured with a ruler and 
dividers. The time and downstream location of this measurement were recorded, as 
well as the nose location. This procedure was repeated in each run until measurements 
were taken a t  all positions of a clear vortex sheet. The number of samples in each 
run ranged from two to sixteen according to the quality and the subjective 
identification of a vortex sheet. We intentionally ran as many extreme vhlues of g* 
and f as possible (see table 1 )  in order to sample a wide variety of parameter space, 
so some runs are close to marginal in quality. We emphasize, however, that an 
unmistakable diEerence exists between this ‘vortex sheet ’ and the density or dye 
front, aside from the fact that a precise measurement of the latter is also ambiguom 
and difficult. 

The reason for the qualitative difference is quite clear from the observations. Dyed 
fluid that entered the nose (figure 3) exited in the rear and was left behind as an eddy 
or wave as the nose marched on. Although this was a major event for the long-time 
mixing of density (and also vorticity) in the boundary current, i t  was clearly a 
‘secondary’ effect, and, in order to determine the primary width of the boundary 
current, it  is quite reasonable to bias the observations towards a measurement of the 
shear lines. The number of ‘ independent ’ and usable measurements of L  ̂ in each run 
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FIGURE 4 (a-d).  For caption see facing page. 

is shown by the numbers inside the circled data points (figure 5). The plotted L^ is 
the average distance from the wall of the points of maximum lateral shear in each 
run, and A is the average value of the corresponding wall height. The measurements 
of I;  and h were confined to  a certain space-time interval that  is determined by 
theoretical and practical considerations. Thus no measurements were taken until 
some time after the gate was lifted, and no measurements were taken after the nose 
reached the end of the tank and started to wind around the tank. No ( E ,  6)- 
measurements were taken in the nose of the bore, or a t  very large distances upstream 
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FIGURE 4. (a )  A rotating density current in its early stage propagat.jng along the right-hand wall 
of the tank. The image on the t'op is viewed through a 4.5' mirror and is a side view of the current, 
with gravit,y downward in this figure. The image on the bottom is a plan view. The paramet,ers 
are g* = 8 5 ,  T = 1 5 4  and H = 8.7. ( 6 )  The same current 18 s later. The properties of the nose, 
such as  speed, upst'rearn width, and height, have changed Iit,tle, although the eddies being shed 
are a little smaller. (c) The same current 31 s after (a). The current exhibits a great deal of similarity 
t'o ( 6 ) .  ( d )  After the current has hit the end of the tank, i t  turns the corner. The side view shows 
t'he depth of penetration of the fluid at the corner stagnation point, and illustrates that  the fluid 
still possesses a significant amount of its original potential energy. ( e )  This intrusion (plan view) was 
at a relatively low Reynolds number. and the eddy t,hat, is being shed a t  the nose is almost laminar. 

from the nose, and only a relatively small number of measurements were taken in 
the 'neck' behind the nose. 

Conversion of the cin6-film measurements to  real centimetrcv was determined 
from the image of 5 em fiduciary marks in the side and top images. In  both cases, 
no correction was made for parallax as the bore moved along the tank, since we 
estimate that  the geometric corrections are smaller than the unwrtainty due to  the 
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FIGURE 5. Suitable normalized values of height (a ) ,  bore nose velocity ( b ) ,  and bore width for 90° 
gate (c) and 45’ gate ( d )  as a function of the hydrostatic number. The numbers in (c) and (d )  denote 
the number of observations of regions of distinct shear that went into the average. 

g* T(= 4nlf) H 
( c m l s )  ( s )  (c1n) 

17.15 14.5 4 
17.15 150 4 
12.8 20.25 4 
3.1 59.6 4 
3.1 406 4.2 
8.5 30  1 4 
8.5 154 8 7  
8.5 294 8 
4.2 15.3 4 6  

12.8 30.5 6.0 
2.1 60.7 3.0 
3.1 593 4.0 
3 1 606 3.0 
4.2 21.9 4.0 

s*lf 2H 
5.84 
6.27 
8.5 

17.8 
7.68 

1 2 5  
1.57 
6.20 
1-24 

12.6 
16.3 
17.25 
24.03 

3.18 

(g*H3)1/v 

3313 
3313 
2862 
1408 
1515 
2332 
7481 
6597 
2022 
5258 
753 

1409 
915 

1640 

fE(g*h)-i c(g*X)-$ 

0.495 1.19 
0494 1.19 
0435 1.12 
052 0.98 
0.42 0.74 
037 1.25 
0605 1.65 
0.382 1.64 
0763 0.85 
0.387 1.37 
0.435 082 
0343 1.14 
0.369 0.87 
0.632 1.04 

TABLE 1. 90° Experimental parameters and results. 

hIloselH 

0438 

0.375 
0400 
0500 
0.57 1 
0314 
0150 
0215 
0542 
0.318 
0414 
0.500 
0.357 

- 

subjective factor entering the measurement. Data for the experiments are shown in 
tables 1 and 2. 

The measurements of depth and width were used in the non-dimensionalized 
number j’L(g*fE)-i in the above tables, and the results were plotted as a function of 
g * / f 2 H  in figure 5. This latter number we call a ‘hydrostatic number’ as it is the 
inverse-square ratio of the thickness H of the less-dense fluid layer in the reservoir 
and the Rossby radius of deformation. The reciprocad hydrostatic number is also a 
measure of the slope of the undisturbed front in the vertical plane sketched in figure 1 .  
I n  shallow-water dynamics, and in most other large-scale geophysical problems the 
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9* 
(cm/s2) 

17.5 
12.8 
3.1 
4.2 
8.5 
8.5 
3.1 
8.5 

12.8 
4.2 
3.1 

T( = 4n/f) 
(4 

14.5 
204 
59.6 
21.9 
15.5 
29.3 
6 0 5  
303  
304 
15.3 
5 9 3  

H 

4.4 
4.0 
4.0 
4.0 
8.7 
8.0 
30 
4.0 
6.0 
4% 
4.0 

(cm) s* l f  2H 
5.18 
8 4 3  

3.18 
1.49 
5.78 

2.203 
12.35 
1248 

1.11 
17.26 

17.4 

TABLE 2 .  45' Experimental parameters and results. 

f€(g*A)-? 

0.48 
0.47 
0 4 5  
0.73 
0 8 0  
0.49 
0.53 
0.46 
037  
0 8 6  
0 3 8  

hydrostatic number is large and irrelevant, since it disappears with the introduction 
of the hydrostatic assumption. This might not be true for engineering or some 
estuarine problems, however. 

Figure 5 shows that when the hydrostatic number is above five, fL^(g*A)-a is 
relatively constant; for the data in figure 5 and table 1 with hydrostatic number 
greater than five, the average value is 0.423 with a standard deviation of 0056. 

I n  view of the subjective and arbitrary factors in the measured width, three 
reproducibility tests were conducted. Experiments were performed for two initial 
conditions: a gate at right angles to  the wall of the tank, and another a t  45O. The 
quality of the latter experiments was somewhat lower, but i t  was attempted to 
duplicate the external parameters (g*, H and f) as closely as possible and to compare 
results. Both results are shown in figure 5 .  For the 45' gate the average value of the 
width for g * / f 2 H  > 5 is 0-453 with a standard deviation of 0.051. The most severe 
reproducibility test involved the use of a student to re-analyse the movies! Approxi- 
mately 50 OiO of the data agreed with the measurements by J. W. to within 10 O/,, . This 
occurred for those runs where the vortex sheets were clearly the most visible and least 
ambiguous. There was one period a t  the beginning of the test where the student was 
consistently lower by approximately 50 Y O .  This occurred during one afternoon and 
may be due to  a conservative streak during that day. The remaining 20 OiO were also 
somewhat smaller than the measurements by J .W. ,  but appeared to be better in 
quality. Therefore J. W. repeated his measurements very carefully, and those data 
are reported here. These occurred in the experiments which were most difficult to 
measure denoted by question marks in figure 5 .  

Another check on the quality of the data was to look a t  the cink films a t  one sitting 
and rate them good or marginal, based upon the clarity of the vortex sheets seen in 
the films. (As is often the case, the vortex sheet is easier to see in the laboratory than 
it is in the film because the movement of head and eyes aids the perception.) The 
marginal ones are labelled with a question mark in figure 5, and they only occurred 
when g* was small (2.1 or 3.2 ern SP). Under the latter conditions surface tension may 
generate a surface ' stiffness ' by creating a surface traction against convergence and 
divergence. It is evident that  some of the marginal cases were furthest from the line. 

The curves for L^ in figure 5 have been drawn by eye, and are slightly biased by 
the preceding consideration, but the asymptote at large hydrostatic number seems 
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FIGVRE 6. Position of the nose of the bore as  a function of scaled time for the fourteen 
experimental runs with the 90' gate. 
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7 

FIGURE 7 .  Position of the nose of the bore as a function of time for runs tha t  lasted a large 
number of rotation time scales. 

to be highly significant and relevant to the theory in the following sections. Thus we 
tentatively conclude that there is a unique width for the shear zone for the large 
hydrostatic number, with 

fz - 0433 & 0056 

f = 0.453 k 0.051 

(2.1) w- 

m 
for the 90' barrier, and 

(2.2) 

for the 45' barrier. 
It is conceivable, however, that there may be not one curve, but a whole band of 

curves, i.e. the jet width may not be unique but may depend on other factors which 
are not within our control - such as the instability waves that form on the front in 
the reservoir when the barrier is removed. 

This point of view is also suggested by the measurements of bore speed (figures 
6a ,  b ) ,  which were only taken for the runs with a gate a t  90'. The ordinate is the 
non-dimensional displacement of the nose bore from the dam, the abscissa is the 
non-dimensional time, and the points are the observations for each run. The 
identifying date and run numbers are also indicated. The curves drawn through these 
points have smoothed out some small variations in bore speed that may be real. A 
decrease of slope with increasing time can be clearly seen in some of the runs, and 
after very large times (figure 7) some of the noses stagnate and curve away from the 
wall forming a large gyre! The lack of 'similarity' of the curves is apparent. For each 
curve the extrapolated (small time) tangent has been drawn, and the corresponding 
non-dimensional speed C(g*A)-i computed. For figure 6(a )  the mean speed is c = 1.09, 
and for figure 6 ( b )  i t  is c = 1.16. I n  both figures the variation of C is real, but no 
correlation with g*/f 2H has been found. Figure 8, however, indicates some systematic 
variation of 2 with the product of the velocity scale (g*H)i and the depth scale H ;  
and therefore the results (figure 8) have been plotted as a function of the overall 
Reynolds number H ( g * H ) k l ,  even though the viscosity was not varied in the 
experiment. The implicit assumption here is not unreasonable, because Simpson & 
Britter (1979) observe that the nose speed in a non-rotating density current depends 
on Reynolds number when the latter is less than lo3. The dynamically significant 
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FIGURE 8. Scaled velocity as a function of the overdl Reynolds number. 

Reynolds number may be a proportionally smaller value for three reasons: ( i )  the 
depth of the jet is less than upstream height H (figure 5); (ii) the depth of the jet 
varies across the stream and goes to zero; and (iii) the depth of the nose is small and 
goes to zero a t  the leading edge. At large Reynolds number (> 4000) the envelope of 
the data tends to c = 1.56 with a standard deviation of 0.05. At smaller Reynolds 
number the phase speed is approximately 20 yo less. It is plausible that the systematic 
effect of the nose viscosity on the upstream width (figure 5 c ,  d )  is less than or equal 
to this 20 of;. 

3. A quasi-steady theory for a rotating density current 
Figure 3 is a schematic diagram of the nose of the boundary intrusion as i t  is flowing 

along in a statistically steady state. The streamlines are drawn relative to an observer 
who moves with speed c" of the nose of the intrusion (and in this frame of reference 
the nose is thus a stagnation point). 

Under ideal conditions one would like to consider the light fluid to be separated 
from the heavy fluid by an interfacial surface that intersects the free surface (2 = 0) 
a t  the 'front';  the latter being a free streamline and a vortex sheet. This idealization 
differs somewhat from a more realistic sketch (figure 3) of our experimental 
observations, which shows part of the boundary flow entering the nose region and 
being left behind (detrained) as i t  folds the front backwards. The sketch in figure 3 
illustrates the continuous nature of the fields and replaces the vortex discontinuity 
of the free streamline by a strong maximum-shear line (at  E )  lying outside the 
dividing streamline. The width L^ that  was actually measured in the experiments 
cbrresponds to this strong maximum-shear line. Another dynamically significant 
width is the dividing streamline (figures 3a,  c), located a t  distance Qd from the wall. 
The distance Qd is defined such that the mass transport relative to the nose vanishes 
in the interval = 0 to Q = Qd, i.e. 

(.i;-qhdQ = 0, Jogd 
where .li is the longshore (2)  component of the vector velocity 0 in the non-translat'ing 
(f-frame) system, and h is the local layer thickness of a two-layer model. All the 
quantities in (3.1) are evaluated far upstream from the nose (2  = - co), in a region 
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FIGI-RE 9. ( a )  For a non-rotating dam-break problem, the initial-value solution gives a thinning 
'wedge' for the shape,of the intruding light water of density p. ( b )  The non-rotating bore in the 
quasi-equilibrium KCrman-Benjamin theory. 

$ < gd where our observations indicate the flow to be approximately steady and 
laminar. On the other side of the dividing streamline, however, our observations 
indicate a much more unsteady and non-laminar flow. Thus a conservative Bernoulli 
function exists for the region inside the dividing streamline, and this function is found 
by transforming the equations of motion from the f-frame to a frame that translates 
with relative speed c^. 

If j3 is the pressure, and if 1 is the height of a point above a level surface in the 
f-frame, then the ?-frame velocity V, satisfies 

d V , / d t " + f k ~ V , + f k x e =  -p-'V$-gVf. 

A Bernouli equation may be formed from this by taking the scalar product with the 
solinoidal V, and writing the result in the form 

If the motion on any free-surface (p = constant) streamline is steady in the 
translating frame, then the Bernoulli function 

B = +V: + f2$ + 95 (3.2) 

is invariant, and this assumption will be made for certain regions in the flow. 
Reference is first made to Benjamin's (1968) selective use of the Bernoulli invariant 

for the problem (figure 9) of a non-rotating density intrusion. Von Khrman (1940) 
proposed a completely steady solution, but this does not exist. The main region of 
unsteadiness is located in the hatched region of figure 9, which region is somewhat 
analogous to the unsteady lateral front in our problem. We shall, therefore, follow 
Benjamin by assuming invariance of (3.2) in regions removed from the mixing sites. 

Steady relative motion is now assumed on the free-surface streamlines located a t  
$ = 0, i.e. along the two streamlines passing through the stagnation point. At 2 = 00 

in the heavy-fluid region, the velocity V, relative to the nose is given by 4, = -?, 
and the Bernoulli invariant then gives: 

462 = gd,, (3.3) 

where 2,  is the geopotential height of the stagnation point. The other streamline lying 
in the light-fluid region yields: 

i ( a - , - e ) z + g I ,  = g&, (3.4) 

where is the velocity (0 )  and Loo is the geopotential far upstream from the nose. 
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The cbliminat,ion of 2, gives 

g (;c-,-e)2+g&-, = g e z .  (3.5) 

Since t,he geopotential height of the upstream free surface on the wall is related to 
t'he layer thickness A, by the hydrostatic considerat'ion, i.e. (p + A p )  9 - ,  = ApAo, one 
can rewrite (3.5) as 

where g* = gAp/p. 
In  the non-rotat'ing theory with no detrainment C-, is a constant equal to 2 ,  and 

the use of this gives t = (3g*f; ,)~. Although a mass flux relat'ive t'o t'he nose is always 
observed (Britt'er & Simpson 1978), t'he quantitative effect on c" of this detrainment 
is small (in a limiting case), presumably because of the strong opposition of 
gravitational stability. 

But in our problem (figure 3) lateral detrainment can occur without great 
gravitational opposit'ion, and the effect is indeed most st'riking in our experiments. 
We will therefore reject' the assumption that the upstream volume transport of the 
intrusion (relat'ive to t'he nose) is zero, and the finit'e ratio of t'his transport to t,he 
absolute transport, i.e. 

(3.6) 
g*A, i: = + L, +,-, 
u-rn 

"C 

8 %  (at P = - C O ) .  
rL 

(3.7) 

J G&d# 
0 

will be called the detrainment coefficient. Furthermore, a( - CO. 9 )  is not independent 
of 9,  and therefore additional information is required to determine the wall velocity 

The reader may want to turn to appendix A a t  this point, where Bernoulli 
invariance is also applied to the dividing streamline, and where a simple argument 
leads to an upper bound on fjd. The following argument, on the other hand, claims 
to give a sharper prediction of the width of the current to use in eonneetion with (3.6). 

6 - ,  = $(-a, 0) .  

4. Intrusion of finite potential vorticity 
What are the dynamical factors that  determine c, ?, 8? As a start, we are obliged 

to introduce rather drastic assumptions, one of which, (see §4.3) ,  involves a 
recognition that the experiment involves a ' self-limiting ' process in which certain 
factors (L ,  2,8) are largely independent of the initial conditions. Another assumption 
is the use of the shallow-water equations 

(4.1) 

(4.2) 
as the starting point. These apply to two layers (figure 1 )  of slightly different ( A p )  
density, the lower layer being relatively thick and passive. The upper layer has 
thickness h(P, 9,  f )  and velocity I? = (6 ,  6) .  There is a vertical coast a t  $ = 0 so that 
the transverse velocity is 6(2, 0, f )  = 0, and there is :L free streamline at  $ = L(2, f )  
so that A($, L(2, i), 8) = 0. The neglect of thc friction forces in (4.1) must be kept in 
mind, especially when one considers explicitly the nose region. 

Relevant initial-value solutions of (4.1)-(4.2) are still difficult to  obtain, and we 
shall therefore retreat still further to a generalization of Stern's theory for the 
evolution of long waves on a uniform potential vorticity current. Plausible similarity 

dCT/dt"+ f k x CT = -g" VR, 

a&,@+ v . CTR = o 
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assumptions (cf. (4.29) and the last paragraph in $4) will be made which relate the 
evolution of the long-wave solution to a corresponding state of the experiment. 

4.1. Long-wave equations for  uniform potential vorticity 

Let us first write (4.1) in the alternative form 

aV/ai+ (f+ f )  k x 0 = -v(g*h +$V2)), (4.3) 

f =  k * V x V ,  (4.4) 

and the conservation of potential vorticity (f + [)/A is also implied. Therefore, if the 
initial state has uniform potential vorticity f / H ,  where H is the uniform initial 
vertical thickness, then 

f+ f -  f 
x - 2  (4.5) 

a t  all subsequent times. The component of V parallel to  the coast is denoted by 6,  
the fj-component is denoted by 6, and the foregoing equations are made non- 
dimensional by the transformations 

(4.61 1 E, = h,h(r, y ,  t ) ,  f j  = (g*h,)t.f-'y, B = E-'(g*h,)~-'x, 

& = (g*ho)b,  6 = E(g*h,)b, t" = c-lf-'t,(4.6) 

A = h,H, 

where h, is a given vertical depth scale, and E is the scale value of cross- 
stream/downstream velocities. In figure 3 ( b ) ,  and in that which follows, h, is 
conveniently taken as the wall height of the intrusion far upstream in the laminar 
portion of the coastal current, and from geostrophy i t  follows that g*hi/2f equals 
the volume flux. 

When the non-dimensional equations are written in Cartesian form, and when the 
long-wave ( E  - 0) limit is taken, the result is 

L = (g*h,)&l L ( r ,  t ) ,  h(2, L, t") = 0 ;  

(4.7) 

(4.10) 

It is easy to show (by taking the y-derivative of (4.7)) that  (4.7) is satisfied a t  all y 
if it  is satisfied at any one particular y ,  and if (4.8)-(4.10) are satisfied a t  all y .  

Equations (4.8) and (4.10) give an ordinary differential equation for h,  and if Cl(r, t )  
denotes the value of u on y = L (where h = 0) then the solution is 

L-Y u(x, y, t )  = - H t  sinh L-y + U cosh ~ H i  H'. . 

(4.11) 

(4.12) 

9 E L M  123 
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The zero-potential-vorticity limit H-l + 0 yields Stern's (1980) results with 
h = IT(I l -y)-$(L-y)z  and u = U - L + y .  

4.2. Time -d epende nt equatiom 

When profiles of u and h are substituted in (4 .7) ,  and the result evaluated a t  the 
particular y = L (where 1 -c?u/ay = 0), we get 

(4.13) 

Sote that P' appears only in (4.7), and its coupling with ( I ! ,  L )  only appears via the 
boundary condit>ions, or via the integrated version of (4.9), viz 

(4.14) 

The substitution of (4.11) and (4.12) in this, and the simp1ificat)ion of the result using 
(4.13), yields 

0 = 

L 
f 

L + (4.15) 

which together with (4.13) form a complete set of quasi-linear hyperbolic equations 
for the position of the front L(x,  6 )  and the velocity U ( x ,  t )  along that free streamline. 

The thickness of the fluid on the wall as obtained from (4.11) is 

(4.16) 

and by using our normalizing condition h(-  00.0, t )  = 1 we get the boundary 
condition for t'he upstream state section (curve PWQ in figure 10): 

L 
l = H  1-cosh7 +HiVsinh- a t  x=-m. [ H. "1 H i  

(4.17) 

The non-dimensional H is inversely proportional to the potential vorticiby, and the 
simple case of zero potential vorticity may be obtained from (4.15) and (4.17) by 
expanding the hyperbolic functions in an L/Hb power series. By neglecting small 
terms of order L / H t  we then get 

ac aL a IT 
TT-+ ( U-+L) (IT-- L )  -++L( IT- L )  - = 0, 

at ax ax (4.18) 

1 = L(I7-iL) a t  x = - ~ .  (4.19) 

4.3. Similarity solutions 
There are no solutions of (4.13) that  preserve their form, and the 'simplest' solutions 
are those in which the functional relations between L ( r ,  t ) ,  U(x ,  t ) ,  h ( x ,  0, t )  are 
independent of time and position x. (We also note that the experimental relation 
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between L  ̂ and h, is ‘universal’,) Therefore, we now look for solutions such that U 
is some (unknown) function of L ( x ,  t )  alone, i.e. 

u = U(L), (4.20) 

aL a u 
-= U’(L)-, 
at at 

- a u = U’(L)-. aL 
ax ax 

(4.21) 

(4.22) 

Upon substituting this in (4.13) and (4.15) we obtain two simultaneous quasilinear 
equations for (aL/at,  aL/ax), the first of which is 

(4.23) 

This implies that  L (and U and h(x, 0, t , ) )  is constant relative to an observer moving 
with the local propagation speed 

u - dx  - _  
dt 1 - l/U’(L) ’ 

(4.24) 

When (4.20) is used in (4.15) we obtain a second quasi-linear equation for aL/at and 
aL/ax. Elimination of these two derivatives from the two simultaneous equations 
gives a quadratic equation for U ‘ .  After using some hyperbolic trigonometry to solve 
for 1/ (  U’- l ) ,  the roots of this quadratic can be expressed as 

(2UIHt) cosh (L/2Hi) - = I -  dU 
d L  a+ (a2+ b)i 

L U  
a = sinh (L/Hi)[ 

b = 
L 

(4.25) 

(4.26) 

(4.27) 

Equation (4.25) gives two ( +) intersecting families of curves in the ( U ,  L)-plane, and 
the intrusive solutions of interest pass through the nose point L = 0. The two families 
are given in figure 10 for uniform potential vorticity H = 2, and comparison with the 
zero-potential-vorticity curves (figure 1 1 )  shows that there is not much difference in 
the vicinity of L = 0. 

Corresponding values of L,  U far upstream must correspond to one of the points 
(say P)  lying on the dashed auxiliary curve in figures 10 and 11.  Through this point 
P, pass two (rt ) solution (4.25) curves, one of which represents a ‘wedge’ and the 
other a ‘bore’ intrusion (Stern 1980). A wedge solution @ passing through P has a 
local propagation speed that increases towards the nose, so that an observer moving 
with the nose sees the wedge get thinner with time until frictional forces eventually 
become dominant in the nose region and slow the nose down. Thus all the ‘wedges’ 
have a divergent energy flux in the nose region, and these solutions are apparently 
irrelevant for the model we seek. The 0 solution (curve PAS), on the other hand, can 
be shown (see Stern 1980) to have a local propagation speed that decreases with I,, 
and the nose of this bore-like intrusion advanccs slower than the rear. Thus an observer 
sees the front steepen with time, whereupon the short-wave terms neglected in this 
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FIGURE 10. The trajectories of solutions in ( U ,  L)-space for non-dimensional potential vorticity = 2 .  
The limiting bore solution corresponds to the line 0 W and the long-dashed line corresponds to the 
upstream condition (4.17), which any solution must lie on. 

=3 

FIGURE 1 1 .  The trajectories of the solutions in (17, L)-space for zero potential vorticity. 
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theory become important and the ‘shock ’ modifies the nose. Although these solutions 
might be relevant, we note that there is an entire family of bore solutions, 
corresponding to all the P-type points, and further specification is necessary. 

Consider the nose region ( L  = 0) of the current, and replace the hyperbolic 
functions in (4.25)-(4.27) by the leading terms in a small-L expansion. The result 

(4.28) 

is valid for small L and all H .  This relation also holds for all L when H-l  - 0. The 
bore solutions are obtained by using the - sign. 

Equation (4.28) is infinite a t  L = 0 if CJ(0) is finite, so that the frontal slope 

will vanish if U(0)  > 0. Under these ‘unrealistic’ conditions, a thin nose (aL/ax = 0) 
exists a t  all times a t  L = 0 and, furthermore, the shock which will occur for this 
solution will be located behind the nose. The only exception occurs for the bore 
solution satisfying the end condition 

U(0) = 0, (‘429) 

for then (4.38) is finite at L = 0. aL/ax can then be finite, and aL/ax = cc can occur 
first a t  the nose. This (4.29) ‘limiting bore’ also has the property that its upstream 
width is maximal among all the intrusions that propagate as a bore. Initial states with 
a greater width have to adjust so that a thinner portion propagates down the coast, 
leaving the thicker portions behind. Further discussion of (4.29) appears in $6. 

The maximum width of this limiting bore is found by integrating (4.25) with the 
- sign: 

(2U/Hi) cosh fL /ZH?)  - - - = I -  dU 
dL a -  (a2+ b)i 

(4.30) 

and by using the boundary condition U(0)  = 0. The resulting curve OW is extended 
until it  intersects the upstream state curve at point W (figure 10). 

For zero potential vorticity, Stern (1980) found that the abscissa of the latter point 
W is (figure 1 1 )  

L=0 .418  for x = - c c  (4.31 a )  

For finite H (4.30) was integrated by a Runge-Kutta scheme, and the result for 
. H  = 2 is the curve OW in figure 10. The upstream state curve (4.17) is RQW, and 
the point of intersection W corresponds to L = 0-422. A number of values of H were 
taken in the range 1 < H < co and the computed L lies in the range 

0.418 < L( - 00)  < 0.426. (4.31 6 )  

Thus we conclude that the limiting bore width L N 0.42 is essentially independent of 
potential vorticity. 

The foregoing long-wave theory is obviously not uniformly valid, and i t  will fail 
when the first shock forms (at the nose). At that  time i t  is reasonable t o  suppose that 
the short-wave theory ((4.1) and (4.2)) will modify the entire nose region and 
accelerate the nose. But it is reasonable to assume that there will be no modification 
upstream. This means that the value of 11 in the latt,er regions will equal t’he 



256 M .  E .  Xtern, J .  A .  Whitehead and B.-L. Hua 

long-wave-theory result even though the nose is more drastically modified. This 
assumption is testable in principle by integrating (4.1) and (4.2) numerically. The 
non-limiting bores (U’(0)  = a), on the other hand, will break first behind the nose 
and will probably evolve into a more complicated structure (e.g. separated flow). 

5. Quasi-steady nose speed and detrainment coefficients 
The limiting value of the nose speed (in the post-steepening phase mentioned above) 

must be consistent with the upstream mass flow, and with the Bernoulli condition, 
i.e. (3.6) and (3.7). The .ii(y), 6(y) appearing in the latter are to be evaluated far 
upstream, and, according to  the main assumption a t  the end of $4.3 are given by the 
long-wave theory. 

The calculations are given first for zero potential vorticity, (H-l -+ 0 ) ,  in which 
case (4.11), (4.12) and (4.17) reduce to 

u = U-L+y, h = U(L-y)- ~ ( L - Y ) ~ ,  1 = UL- +L2 a t  x = - CO, 

and from these we get 

hudy = $h2(0) = + a t  x = - CO, 

hdy = +UL2-QL3= +L+&L3 a t  x = -m. 

foL 
foL 

The wall velocity is then U( -CO,  0) = l/L-$L. Since L = 0418 (4.31a), (3.6) and 

c = 1.546, 

6 = 0.332. 

(3.7) yield 

For finite potential vorticity, one has 

( 1  - H) cash L / H i + H  at 
Hi sinh L/Ha 

U =  z=-CO, y = o ,  (5.3) 

h u d y  = $h2(0) = $ a t  z = - co, foL (5.4) 

1-2H I, 
H[L+HasinhL/Hi (coshm-l)] a t  x = - C O .  (5 .5)  

When H = 2, we have found that L = 0.42 (figure lo), and the values of (3.6) and 
(3.7) are then computed to  be c = 1.57 and 6 = 0.32. For the whole range 1 < H < 00, 

the values of ( c ,  6) do not differ by more than 3% from the above values. Thus we 
conclude that the nose speed, detrainment coefficient and boundary-current width 
are essentially independent of the potential vorticity for a given volume transport 
(i .e. h,). 

We have also investigated (appendix C) the effect of a finite bottom layer, and found 
that this increases the range of widths of the boundary current to 

0413 6 L( - CO) 6 0.516, 

and L( - 00)  = 0.43 when the total depth is twice the upper layer depth (h,) and when 
H = 2. Under these conditions C = 1.56 and 6 = 0.34. Thus we conclude that the 
boundary current width, speed c, and detrainment coefficient are insensitive to the 
lower-layer depth as well as to the upper-layer potential vorticity. 
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f t = t € f  

F I G ~ R E  12. Sketch of the evolution of a bore, as modelled by the present theory. At early 
non-dimensional times ( t  < t z )  no shock has formed and all characteristics flow toward the right. 
The dotted trajectory is the position of the nose. At slightly before t , ,  a shock forms at the nose 
if the solution is tha t  of the limiting bore. However, for the ‘bore’ class of solutions, information 
from the shock does not flow to the left, so trajectories of characteristics t o  the left of the ban= 
are unaltered. 

6. Critical remarks and conclusions 
A dynamically consistent model of the evolution of a coastal intrusion has been 

developed, starting from an initial configuration in which the distance of the front 
from the vertical wall varies slowly in the downstream direction. The uniqueness of 
(L ,  c )  depends on an assumption, the physical significance of which may be argued 
in a slightly different way from that used in the text. 

Suppose that a t  some initial time we have a front that  varies slowly in i from 
2 = - co to the nose point &,. We seek self-similar solutions (ti(%, L^(&, t “ ) ,  t“) = o(L^)) 
of the long-wave equations, subject to certain side conditions, whch will evolve into 
the limiting observable state. The local propagation velocities are required to decrease 
towards the nose, for otherwise the initial state will develop into a thinning wedge 
and the solution will be greatly modified by friction. The proper solution must 
therefore tend to develop a shock, which, according to the long-wave theory, forms 
first a t  some point (t,, x,) in the phase plane (figure 12). The ‘early-stage’ (long-wave) 
equations obviously cease to  be uniformly valid a t  this point, and the more exact 
equations (4.1 1 and (4.2) must be used to  continue the solution into the intermediate 
stage. The next stipulation for our particular solution is that  there be no ‘upstream 
influence ’, in the following sense. Let z,(t) be that straight line which extrapolates 
the nose position as computed from the early-stage equations. We then require that 
the solution at all (s, !)-points to the left (r-.r,(t) < 0) of this line remain a t  the values 
given by the early-stage equation. Implicit here is the (theoretically) testable 
assumption that the early and intermediate stage can be joined in the vicinity of the 
line sn(t), such that the shock forms first a t  the nose. Otherwise, the early-stage 
solution will /Lot be uniformly valid for all x < s,(t), and such an ‘interior’ shock 
(x,(ts) < sn(ts))  will not evolve as simply as the solution being proposed. As mentioned 
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following (4.28), a shock a t  the nose implies that  d U / d L  must be finite at I, = 0, and 
this boundary condition closes the early-stage problem. Although the corresponding 
nose speed is zero, this will be greatly modified by the later stage. The upstream width 
L ,  on the other hand, will not be altered, and we have shown how the later-stage nose 
velocity can be computed by an adaptation of Benjamin’s theory. The mat’hematical 
existence of such a simple solution has, of course, not’ been proven. 

The question of whether this ‘limiting bore’ can be realized does not depend 
critically upon geometrical similitude between the initia.1 state of the experiment and 
the theory. The initial-value problem posed by the experimental set-up is theoretically 
intractable (in our opinion), and only the later stages of the evolution requires 
rationalization. We have shown that the width L of the bore that finally emerges in 
the dam-break experiment (0.42 f 006) is in acceptable agreement with the theoretical 
model. The same is true for the nose speed (5.1), and the detrainment coefficient (5.2) 
is also accounted for qualitatively. (The numbers are insensitive bo bhe potential 
vorticity, and rather insensitive to a second layer of finite depth (see appendix C).) 
We therefore conclude that the limiting bore is approximately realized in the complex 
adjustment process that occurs at the coastal stagnation point after the dam is 
broken, and when a constant-velocity boundary current is found. We have no 
explanation as to why this should occur. 

Other types of coastal intrusions (i.e. solutions) can perhaps be realized by different 
experimental set-ups. Experiments in basins larger t>han ours would be desirable to 
test the Reynolds-number dependence suggested by figure 8. Such experiments may 
show that the downstream distance 2 is an important dimension, as is the case in 
the downstream spread of a ,non-rotating turbulent jet. A statistically steady 
source-sink experiment in a rotating frame would be desirable to resolve the ‘large ’ 
scale eddies that we see, and the averaged profiles should eliminate the subjective 
element that enters into our determination of the width of the boundary current). 

The general aspects of density currents discussed herein may be oceanically 
relevant, even though coasts are not vertical (the topographical effects must be taken 
into account (Stern 1980, p. 701)). We have in mind the formation of surface bores 
during spring runoff, and the formation of abyssal bores during the intermittent flow 
over the sills (e.g. Denmark Straits, Anagada-Jungfern Passage, Gibraltar Straits) 
that separate basins with different water masses. It would be unnecessarily restrictive 
to regard the bore as merely a starting (transient) phenomenon. It may occur a t  any 
boundary where there are strong longshore density gradients, even when these are 
intermittent features of a stationary process. The longshore fronts may form and 
dissipate (rather quickly), with the whole process being an important part of the mean 
boundary current. Such is the impression we get from the experiments, wherein the 
fluid detrained a t  the nose as well as the frontal instabilities give rise to a larger-scale 
mean baroclinic boundary current. 

A substantial portion of the work was completed while the authors were in 
attendance at the Summer Study Program in Geophysical Fluid Dynamics a t  the 
Woods Hole Oceanographic Institution. The program is supported by the Office of 
Naval Research under contract N00014-7940671. Some of the latest experiments 
were conducted with support of the Office of Naval Research contract 
NO001481 -C-O010. The authors are grateful for the skilled laboratory assistance of 
Robert Frazel and want to thank Nathan Paldor for his analysis of the data. This 
paper is Woods Hole Oceanographic Institution Contribution no. 4824. 
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Appendix A. A general constraint on the width 
Following the remark made a t  the end of 93, we now examine the consequences 

of assuming invariance of tvg+ f&$+gZ^ (3.2) on the free-surface dividing streamline. 
At one end 2 = - co , we have vg = ($id - 2)' where $id is the f-frame velocity on the 
dividing streamline far upstream from the nose, and Ẑd is the corresponding free-surface 
height. The datum surface for measuring the latter quantity is the parabolic level 
surface that passes through the undisturbed free surface a t  2 = + co. The dividing 
streamline under consideration must also pass through the nose stagnation point a t  
which 0, = 0, $ = 0, and the height is 2 = f S .  By equating the Bernoulli functions 
a t  the two ends of the dividing streamline we get 

Using (3.3) to  eliminate Ss yields 

Now is a positive number (proportional to h if the lower layer is relatively deep), 
and therefore the above equation gives the important inequality f6 $d < fez, which 
becomes 

when ( 3 . 1 )  is used; i t  being understood that the integrals are evaluated a t  2 = - 00. 

The terms that have been consistently discarded in the formation of this inequality 
from the preceding equations are believed to be larger than the terms (unsteadiness 
and friction) neglected in the primitive equations, and therefore we have high 
confidence in the upper bound for $d. This involves no far-reaching assumptions, such 
as have been made in the text to obtain an explicit equation for the width of the 
intrusion. 

Since the right-hand side of the inequality is certainly less than half the maximum 
d(y), we conclude that the upstream Rossby number based on maximum 4 and $d 

must be greater than two, for a quasi-laminar bore to propagate along a coast. Initial 
distributions of density having widths larger than that permitted by the above 
inequality must therefore suffer a profound readjustment (such as bifurcation) before 
the density current can propagate. 

If the lower layer is very deep, so that the corresponding current in the rotating 
frame is zero then d = - (Ap /p )  (g/f) ah/atj. Upon substituting this and noting the 
geometrical inequality 

where ho is the upstream wall height, we get 

This states that  the laminar bore width $d (which we interpret to be the t measured 
in our experiments) must be less than 0.717 times the Rossby radius of deformation. 
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Appendix B. Some additional features of the evolution of the solutions 
Although this paper is primarily concerned with the leading edge of the intrusion, 

the nature of the waves that can propagate on the trailing front are also of interest. 
This subject has been studied by Stern (1980), for the case of zero potential vorticity, 
and the modifications required by a finite potential vorticity are given below. 

The discussion is based on the properties of the similarity solutions (4.25)-(4.27), 
which will be summarized here. Typical solutions of the two Riemann-invariant 
families ( f ) of (4.25)-(4.27) are given in figure 10 for a non-dimensional potential 
vorticity H = 2, along with other auxiliary curves, A comparison with the zero- 
potential-vorticity case in figure 11 yields no qualitative differences. 

A curve such as PS in both figures corresponds to propagating bores as defined 
by Stern in which the upstream velocities are larger than the nose speed and in which 
the energy flux converges towards the nose. The wedge solutions such as curve SR 
have the opposite behaviour, that  is the thickness of the nose decreases with time. 

The functional relation between L(x, t ) ,  U ( x ,  t )  and h(x ,  o, t )  is independent of time 
relative to an observer moving with the local propagation speed given by (4.24), and 
which for finite potential vorticity is given by 

ax [:2 H2 H2 "1 L 
2H: --,cosh7-sinh7 

L 
c = 1 +cosh7, Hz 

2H2 I, L 
2H: 

cosh3 - + 2 cash 

L' L L 
-cosh-- sinh 
H i  2H4 2Hz 

For H -+ co, one regains the zero-potent,ial-vorticity case 

CT- L 
- - 

dx 
dt 1 (L/2U-- L)i 
- 

Other curves in figures 10 and 11 that limit the regions of physical meaning are 

The possible values of the upstream state of the current are given by the curve 
also drawn in the phase space ( U ,  L )  and are listed below. 

PQR, which is obtained by setting h(-co, 0, t )  = 1 in (4.11), and thus we have 

L 
H i  sinh - 

H i  

when H + co this reduces to Stern's results 

1 
L 

u = -+iL. 

Solutions of physical meaning must lie above the curve OB, which corresponds to 
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the sections of the boundary current where the depth a t  the wall goes to zero 
which is obtained by setting h(x, 0, t )  = 0 in (4.1 1 )  : 

t T  = Hi tanh- ( 2 3  

The limit for zero potential vorticity yields 

IT = iL. 
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and 

Curve OR is the locus of sections where the flow a t  the wall reverses, and is found 
by setting u(x ,  0. t )  = 0 in (4.12): 

The limit for H + 00 yields U = L. 
Many of the conclusions for the zero potential vorticity are not changed for non-zero 

constant potential vorticity, as the illustration below for the quasi-geostrophic wave 
shows. 

Let us consider a boundary geostrophic current with a front that lies parallel to 
the coast in the intcrval - co < x < + co. If the current is unidirectional, then the 
largest possible width will correspond to the point R in figure 10, i.e. to  the value 

H 
H-1’ 

LR = Hi arg cosh - 

which ir found by intersecting the upstream-state curve ( B 2 )  with the locus of 
sections where the flow reverses at the wall (B 4). If this basic state is perturbed by 
a wavelike motion corresponding to a similarity solution such as the (+ )  Riemann 
invariant passing through R, then the local propagation speed (B l a )  will have 
opposite signs for sections of the boundary current lying on each side of curve OR,  
i.c. for a width L > or < LR. If L > LR,  then the local propagation speed (B 1 a )  will 
be negative since IT(+) ( L )  lies below the curve O R  and will increase in magnitude 
as 1;- LR increases. Therefore, the front will steepen on the upstream side of the wave 
and the amplitude dispersion depending on the boundary-current width will lead to 
a backwards-breaking wave. Moreover, one can verify from the expression of the 
transverse velocity d L / d t  along the streamline, 

a~ aL 17 aL 
at ax i - w a x 3  t 1 =  --+ [l- = ~- 

and by evaluating ?h/& from (4.11), 

ah L - ~  aL 
- = [ -Hisinh-+ Ucosh- ax H: Hi I&’ 

that 1’ N [ a h / a ~ ] , = ~  at point R (since U‘ N 0) and the wavelike motion is quasi- 
geostrophic for both longitudinal and transverse velocities. Thus the discussion above 
is independent of the finite value of constant potential vorticity, and the generalization 
of ‘the other waves and blocking waves’ as discussed by Stern (1980) is also 
straightforward. 
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Appendix C. The effect of the finite bottom-layer depth 
Although the thickness of the heavy fluid in our experiments was an order of 

magnitude larger than the thickness of the intrusion, there will be some vertical 
compression of the heavy fluid columns as the bore passes over them, and it is of 
interest to investigate the feedback. For this purpose the rigid bottom of the tank 
is assumed to be a level surface so that the fluid in advance of the nose has uniform 
thickness and a uniform potential vorticity. The non-dimensional value of the latter 
is denoted by 1 / H 2 ,  whereas l/Hl now denotes the potential vorticity of the upper 
layer; both of these being based on h,  as the unit of height. If e(x, y, t )  denotes the 
pressure on the upper z = 0 surface, and &(x, y, t )  the pressure on the bottom surface, 
then the generalization of (4.7) and (4.8) to the two-layer case is 

(c: 1 )  

u1 = - (rP1)y. u2 = - (PAY.  (C 3 )  

The hydrostatsic relation connects the upper-layer thickness h with the pressure 
gradients : 

Vp, -Vp2 = Vh, 

(ul - z& - [( 1 --UIY) 211 - (1 -uzy) v,] = - ( h  +;u:-4u;),, 

(c: 3) 

(C 4) 

( u ~ - u ~ )  = -hy. (C 5) 

and thus the elimination of p ,  and p z  in (C 1 )  and (C 2)  gives 

The continuity relat’ions for the two layers are 

and t’he potential-vorticity equations are 

(C 9) 

The top layer extends from y = 0 to y = L ( x ,  t ) ,  where h = 0, whereas the bottom 
layer extends from y = 0 to y = 00 with a non-analytic behaviour a t  y = L(r,  t ) .  The 
circulation theorem precludes a vortex sheet in the heavy fluid, and thus uz must be 
continuous on either side of the front. Moreover (C 9) implies uzy = 0 for all y 2 L,  
and therefore 

- 0 = uz at y = L(z ,  t ) ,  (C 10) 
au2 

a!/ 
-- 

for otherwise u, would be infinite a t  y = m. 

(C’ 10) are 
The solutions of (C 5 ) ,  (C 8)  and (C 9) that  satisfy the y = L boundary conditions 

(C 11) 
h(x,y,t) = H +H:UsinhT, L--Y 

H Z  
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u1(x, y, t )  = - ( y  - L + Cl) + 
H2 

u2(z,y,t) = 

- H i  sinh % + li cosh -T- "-"j Hn ' (C 12) H 1  

+ UcOsh%), (C 13) 

H 

H2 
H 

where 

now denotes an 'equivalent depth', and li  = u l ( x ,  L,  t )  as previously. 

au l /ay  = 1 ,  
To obtain the long-wave equations for (", L )  we will evaluate (C 4) on y = L where 

= u 2  = 0, and therefore 

We will also use the integrated version of (C 6) and (C 7 ) .  or 

L ( x , t )  L ( x , t )  
Jo h,dY+J0 (hu,),dy = 0, I (C 15) 

Eliminating between (C 14) and (C 15) gives the following system: 

[ ( % -  % ) t l y = L  + [ (h  + i 4 ) x l p L  + - 

(hu,),dy = 0,  (C 16) 

(C 17) 

When the profiles of ul(x, y .  t ) ,  h ( r ,  y ,  t )  and u,(J,  y ,  t )  given by (C' 11)-(C 13) arc 
used to evaluate the above terms, and when the result is simplified, we get 

L 

(C 18) 

L 2 L  l T  
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One can verify that for H / H ,  -+ 0, i.e. in the case of a boundary current ovcrlying 
an infinitely deep second layer, (C 18) and (C 19) are identical with the system found 
in $4, (4.15) and (4.13) respectively. Terms multiplying HIH,,  i.e. due to the coupling 
of the bore with a second layer ofJinite depth, give an extra contribution of order 
L 2 / H ,  for small LIHB. 

The similarity solutions satisfying the functional relation (4.20) obey the ordinary 
differential equation 

(C 21a) 

L 

")} (C21b)  
L 

I; 

{ H",[ Hz 
x 1 + - cosh -,- 1 + sinh 

-(Ey s i n h g  (cosh-,- L 1 --cosh-- sinh- 
Hz )(:+ H i  Hi 

When putting H I H ,  = 0 in (C 20) and (C 21), we recover the system found for an 
infinitely deep second layer, (4.25) and (6.26). Again the leading terms in an expansion 
in LIHB in (C 20) near L = 0 are identical with those previously found for the 
zero-potential-vorticity case. Therefore the discussion concerning the nose boundary 
condition still applies, i.e. we need U ( 0 )  = 0. 

The upstream width of this simple bore will be found by integrat'ing (C 20) using 
(4.29), and by finding the int,ersection with the upstream-state curve 

L 

L 
H i  sinh - 

H i  

l + H  cosh--l 
(C 22)  

[ r  = ( HJ ) 

obtained by setting h( - 00, 0, t )  = 1 in (C 11). 
Table 3 gives L( - 00) as a function of the initial equivalent depth H and the ratio 

HIH,. However, for a given H ,  not all values of H I H ,  are allowed, since H ,  2 1 and 
H ,  2 1. The entire range of L( - co) in table 3 is 

0.418 < L( - 00) < 0'516, (C 23) 

and thus the coupling with a sccond layer may increa,se the width of the boundary 
current up to 25 yo. The largest values of L( - 00) are found for small H (05 < H < l ) ,  
i.e. for values of both H ,  and H ,  close to 1. The maximum of L( - co) is reached for 
H = 0.5 ( H I  = 1 and H ,  = 1) .  

However, interesting values of H ,  and H,  would be closer to 2 (remember that the 
upstream height has been chosen for normalizing the heights) and in this range the 
width of the boundary current remains within 10 "/A of the valuc found for the very 
simplest case of one layer with zero potential vorticit'y. The new profiles of current 
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0.1 0 3  0.5 0 7  0.9 

- - 0.5 0.516 
0 7 5  - 0350 0470 0496 - 

1 0 4 3  1 0.442 0454 0469 0488 
2 0425 0.429 0435 0440 0446 

10 0.420 0.42 1 0.422 0422 0423 

~ - 

TABLE 3. Values of upstream width L( - 03) as a function of initial equivalent depth H and of 
ratio H I H ,  

given by (C 11)-(C 13) have also been used to evaluate the nose speed c and the 
detrainment coefficient 6. For the upstream wall velocity we have 

L 
H2 
L 

H4 sinh -I 
Hz 

( 1  - H )  c o s h y +  H 
a t  z=-co, y = O ,  (C24) 

H H 
u1 = - (I7-L) +- 

H2 HI 

where I' is defined by the upstream condition (C 22). The other quantities j h  dy and 
Jhu  dy needed for (6, c)  have the same formal expression as (5 .5)  and (5.4) respectively, 
but in this case H is the initial equivalent depth. Choosing H ,  = H ,  = 2 and 
L( - co) = 043 yields for c and 6 

c = 1-56. (C 25)  

6 = 0.34. (C 26) 

Again we conclude that the bore speed seems to be independent of the structure of 
the current. 
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